Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.165
Filtrar
1.
Drug Metab Dispos ; 50(6): 762-769, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307650

RESUMO

Building and refining pharmacology models require "system" data derived from tissues and in vitro systems analyzed by quantitative proteomics. Label-free global proteomics offers a wide scope of analysis, allowing simultaneous quantification of thousands of proteins per sample. The data generated from such analysis offer comprehensive protein expression profiles that can address existing gaps in models. In this study, we assessed the performance of three widely used label-free proteomic methods, "high N" ion intensity approach (HiN), intensity-based absolute quantification (iBAQ) and total protein approach (TPA), in relation to the quantification of enzymes and transporters in 27 human liver microsomal samples. Global correlations between the three methods were highly significant (R2 > 0.70, P < 0.001, n = 2232 proteins). Absolute abundances of 57 pharmacokinetic targets measured by standard-based label-free methods (HiN and iBAQ) showed good agreement, whereas the TPA overestimated abundances by two- to threefold. Relative abundance distribution of enzymes was similar for the three methods, while differences were observed with TPA in the case of transporters. Variability (CV) was similar across methods, with consistent between-sample relative quantification. The back-calculated amount of protein in the samples based on each method was compared with the nominal protein amount analyzed in the proteomic workflow, revealing overall agreement with data from the HiN method with bovine serum albumin as standard. The findings herein present a critique of label-free proteomic data relevant to pharmacokinetics and evaluate the possibility of retrospective analysis of historic datasets. SIGNIFICANCE STATEMENT: This study provides useful insights for using label-free methods to generate abundance data applicable for populating pharmacokinetic models. The data demonstrated overall correlation between intensity-based label-free proteomic methods (HiN, iBAQ and TPA), whereas iBAQ and TPA overestimated the total amount of protein in the samples. The extent of overestimation can provide a means of normalization to support absolute quantification. Importantly, between-sample relative quantification was consistent (similar variability) across methods.


Assuntos
Fígado , Proteínas de Membrana Transportadoras , Microssomos Hepáticos , Proteômica , Humanos , Fígado/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Microssomos Hepáticos/enzimologia , Proteômica/métodos , Estudos Retrospectivos
2.
Biochem Pharmacol ; 197: 114887, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34968483

RESUMO

Many drug oxidations and conjugations are mediated by a variety of cytochromes P450 (P450) and non-P450 enzymes in humans and non-human primates. These non-P450 enzymes include aldehyde oxidases (AOX), carboxylesterases (CES), flavin-containing monooxygenases (FMO), glutathione S-transferases (GST), arylamine N-acetyltransferases (NAT),sulfotransferases (SULT), and uridine 5'-diphospho-glucuronosyltransferases (UGT) and their substrates include both endobiotics and xenobiotics. Cynomolgus macaques (Macaca fascicularis, an Old-World monkey) are widely used in preclinical studies because of their genetic and physiological similarities to humans. However, many reports have indicated the usefulness of common marmosets (Callithrix jacchus, a New World monkey) as an alternative non-human primate model. Although knowledge of the drug-metabolizing properties of non-P450 enzymes in non-human primates is relatively limited, new research has started to provide an insight into the molecular characteristics of these enzymes in cynomolgus macaques and common marmosets. This mini-review provides collective information on the isoforms of non-P450 enzymes AOX, CES, FMO, GST, NAT, SULT, and UGT and their enzymatic profiles in cynomolgus macaques and common marmosets. In general, these non-P450 cynomolgus macaque and marmoset enzymes have high sequence identities and similar substrate recognitions to their human counterparts. However, these enzymes also exhibit some limited differences in function between species, just as P450 enzymes do, possibly due to small structural differences in amino acid residues. The findings summarized here provide a foundation for understanding the molecular mechanisms of polymorphic non-P450 enzymes and should contribute to the successful application of non-human primates as model animals for humans.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Modelos Animais , Preparações Farmacêuticas/metabolismo , Animais , Callithrix , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Macaca fascicularis , Oxirredução/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem
3.
Pharmacol Res Perspect ; 10(1): e00903, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34918875

RESUMO

Metopimazine (MPZ) is a peripherally restricted, dopamine D2 receptor antagonist used for four decades to treat acute nausea and vomiting. MPZ is currently under clinical investigation for the treatment of gastroparesis (GP). MPZ undergoes high first-pass metabolism that produces metopimazine acid (MPZA), the major circulating metabolite in humans. Despite a long history of use, the enzymes involved in the metabolism of MPZ have not been identified. Here we report a series of studies designed to identify potential MPZ metabolites in vitro, determine their clinical relevance in humans, and elucidate the enzymes responsible for their formation. The findings demonstrated that the formation of MPZA was primarily catalyzed by human liver microsomal amidase. Additionally, human liver cytosolic aldehyde oxidase (AO) catalyzes the formation of MPZA, in vitro, although to a much lesser extent. Neither cytochrome P450 enzymes nor flavin-monooxygenases (FMO) were involved in the formation MPZA, although two minor oxidative pathways were catalyzed by CYP3A4 and CYP2D6 in vitro. Analysis of plasma samples from subjects dosed 60 mg of MPZ verified that these oxidative pathways are very minor and that CYP enzyme involvement was negligible compared to microsomal amidase/hydrolase in overall MPZ metabolism in humans. The metabolism by liver amidase, an enzyme family not well defined in small molecule drug metabolism, with minimal metabolism by CYPs, differentiates this drug from current D2 antagonists used or in development for the treatment of GP.


Assuntos
Amidoidrolases/metabolismo , Antagonistas dos Receptores de Dopamina D2/metabolismo , Ácidos Isonipecóticos/metabolismo , Microssomos Hepáticos/metabolismo , Adolescente , Adulto , Animais , Antieméticos/metabolismo , Estudos de Coortes , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Método Duplo-Cego , Feminino , Humanos , Masculino , Microssomos Hepáticos/enzimologia , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Adulto Jovem
4.
Chem Biol Interact ; 352: 109775, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34910929

RESUMO

Vicagrel, an antiplatelet drug candidate targeting platelet P2Y12 receptor and has finished its phase II clinical trial. The inhibition of six major cytochrome P450 enzymes (P450) (CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and six UDP-glucuronosyltransferases (UGT) (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) by vicagrel was evaluated using pooled human liver microsomes and specific probe substrates. Physiology-based pharmacokinetic (PBPK) simulation was further applied to predict the in vivo drug-drug interaction (DDI) potential between vicagrel and bupropion as well as S-mephenytoin. The results suggested that vicagrel inhibited CYP2B6 and CYP2C19 potently with apparent IC50 values of 1.6 and 2.0 µM, respectively. In terms of mode of reversible inhibition, vicagrel exhibited mixed-type inhibition of CYP2B6-catalyzed bupropion hydroxylation and noncompetitive inhibition of CYP2C19-mediated S-mephenytoin 4'-hydroxylation with Ki values of 0.19 µM and 1.2 µM, respectively. Vicagrel displayed profound time-dependent inhibition towards CYP2B6 with maximal rate constant of inactivation (kinact) and half-maximal inactivator concentration (KI) values of 0.062 min-1 and 1.52 µM, respectively. No time-dependent inhibition by vicagrel was noted for CYP2C19. For UGT, negligible to moderate inhibition by vicagrel was observed with IC50 values of >50.0, >50.0, 28.2, 8.7, >50.0 and 28.2 µM for UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 and UGT2B7, respectively. In terms of mode of reversible inhibition, vicagrel exhibited mixed-type inhibition of UGT1A6-catalyzed N-Acetylserotonin ß-D-glucuronidation with a Ki value of 5.6 µM. No time-dependent inhibition by vicagrel was noted for UGT1A6. PBPK simulation indicated that neither altered AUC nor Cmax of bupropion and S-mephenytoin was observed in the presence of vicagrel. Our study provides inhibitory constants for future DDI prediction between vicagrel and drug substrates of CYP2B6, CYP2C19 and UGT1A6. In addition, our simulation suggests the lack of clinically important DDI between vicagrel and bupropion or S-mephenytoin.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Fenilacetatos/farmacologia , Tiofenos/farmacologia , Bupropiona/administração & dosagem , Bupropiona/farmacocinética , Simulação por Computador , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/administração & dosagem , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Citocromo P-450 CYP2C19/metabolismo , Inibidores do Citocromo P-450 CYP2C19/administração & dosagem , Inibidores do Citocromo P-450 CYP2C19/farmacologia , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Glucuronosiltransferase/metabolismo , Humanos , Técnicas In Vitro , Cinética , Mefenitoína/administração & dosagem , Mefenitoína/farmacocinética , Fenilacetatos/administração & dosagem , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/farmacologia , Tiofenos/administração & dosagem
5.
Toxicol In Vitro ; 79: 105276, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34875353

RESUMO

Aloe-emodin (AE) is a natural hydroxyanthraquinone derivative that was found in many medicinal plants and ethnic medicines. AE showed a wide array of pharmacological activities including anticancer, antifungal, laxative, antiviral, and antibacterial effects. However, increasing number of published studies have shown that AE may have some hepatotoxicity effects but the mechanism is not fully understood. Studies have shown that the liver injury induced by some free hydroxyanthraquinone compounds is associated with the inhibition of some metabolic enzymes. In this study, the CYP3A4 and CYP3A1 were found to be the main metabolic enzymes of AE in human and rat liver microsomes respectively. And AE was metabolized by liver microsomes to produce hydroxyl metabolites and rhein. When CYP3A4 was knocked down in L02 and HepaRG cells, the cytotoxicity of AE was increased significantly. Furthermore, AE increased the rates of apoptosis of L02 and HepaRG cells, accompanied by Ca2+ elevation, mitochondrial membrane potential (MMP) loss and reactive oxygen species (ROS) overproduction. The mRNA expression of heme oxygenase-1 in L02 and HepaRG cells increased significantly in the high-dose of AE (40 µmol/L) group, and the mRNA expression of quinone oxidoreductase-1 was activated by AE in all concentrations. Taken together, the inhibition of CYP3A4 enhances the hepatocyte injury of AE. AE can induce mitochondrial injury and the imbalance of oxidative stress of hepatocytes, which results in hepatocyte apoptosis.


Assuntos
Antraquinonas/toxicidade , Citocromo P-450 CYP3A/genética , Hepatócitos/efeitos dos fármacos , Animais , Linhagem Celular , Citocromo P-450 CYP3A/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
6.
Neurochem Int ; 152: 105223, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34780807

RESUMO

Among the enzymes that support brain metabolism, cytochrome P450 (CYP) enzymes occupy an important place. These enzymes catalyze the biotransformation pathways of neuroactive endogenous substrates (neurosteroids, neurotransmitters) and are necessary for the detoxification processes. The aim of the present study was to assess changes in the CYP2D activity and protein level during the aging process and as a result of serotonin deficiency in the female brain. The CYP2D activity was measured in brain and liver microsomes of Dark Agouti wild type (WT) female rats (mature 15-week-old and senescent 18-month-old rats) and in tryptophan hydroxylase 2 (TPH2)-deficient senescent female rats. The CYP2D activity in mature WT Dark Agouti females was independent of the changing phases of the estrous cycle. In senescent WT females rats, the CYP2D activity and protein level were decreased in the cerebral cortex, hippocampus, cerebellum and liver, but increased in the brain stem. In the other examined structures (frontal cortex, hypothalamus, thalamus, striatum), the enzyme activity did not change. In aging TPH2-deficient females, the CYP2D activity and protein levels were decreased in the frontal cortex, hypothalamus and brain stem (activity only), remaining unchanged in other brain structures and liver, relative to senescent WT females. In summary, the aging process and TPH2 deficit affect the CYP2D activity and protein level in female rats, which may have a negative impact on the compensatory capacity of CYP2D in the synthesis of serotonin and dopamine in cerebral structures involved in cognitive and emotional functions. In the liver, the CYP2D-catalyzed drug metabolism may be diminished in elderly females. The results in female rats are compared with those obtained previously in males. It is concluded that aging and serotonin deficiency exert sex-dependent effects on brain CYP2D, which seem to be less favorable in females concerning CYP2D-mediated neurotransmitter synthesis, but beneficial regarding slower neurosteroid metabolism.


Assuntos
Envelhecimento , Encéfalo , Sistema Enzimático do Citocromo P-450 , Fígado , Serotonina , Animais , Feminino , Ratos , Envelhecimento/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Microssomos Hepáticos/enzimologia , Neurotransmissores/metabolismo , Serotonina/deficiência , Serotonina/metabolismo
7.
Biomed Pharmacother ; 145: 112391, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34847475

RESUMO

Lenvatinib, a small molecule tyrosine kinase inhibitor (TKI), exhibits good inhibitory effect in several types of carcinomas. Specifically, it is the most effective TKI used for treatment of thyroid cancer. To extend pharmacokinetics data on this anticancer agent, we aimed to identify the metabolites of lenvatinib formed during in vitro incubation of lenvatinib with human hepatic microsomes or recombinant cytochromes P450 (CYPs) by using high performance liquid chromatography and mass spectrometry. The role of CYPs in the oxidation of lenvatinib was initially investigated in hepatic microsomes using specific CYP inhibitors. CYP-catalytic activities in each microsomal sample were correlated with the amounts of lenvatinib metabolites formed by these samples. Further, human recombinant CYPs were employed in the metabolic studies. Based on our data, lenvatinib is metabolized to O-desmethyl lenvatinib, N-descyclopropyl lenvatinib and lenvatinib N-oxide. In the presence of cytochrome b5, recombinant CYP3A4 was the most efficient to form these metabolites. In addition, CYP1A1 significantly contributes to the lenvatinib metabolism. It was even more efficient in forming of O-desmethyl lenvatinib than CYP3A4 in the absence of cytochrome b5. The present study indicates that further research focused on drug-drug interactions, in particular on CYP3A4 and CYP1A1 modulators, is needed. This will pave new avenues towards TKIs-mediated personalized therapy.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Compostos de Fenilureia/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Quinolinas/metabolismo , Animais , Antineoplásicos/metabolismo , Cromatografia Líquida de Alta Pressão , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Interações Medicamentosas , Feminino , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/enzimologia , Oxirredução , Coelhos , Ratos , Ratos Wistar
8.
J Biol Chem ; 298(1): 101520, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34952005

RESUMO

Glucose-6-phosphatase catalytic subunit 1 (G6PC1) plays a critical role in hepatic glucose production during fasting by mediating the terminal step of the gluconeogenesis and glycogenolysis pathways. In concert with accessory transport proteins, this membrane-integrated enzyme catalyzes glucose production from glucose-6-phosphate (G6P) to support blood glucose homeostasis. Consistent with its metabolic function, dysregulation of G6PC1 gene expression contributes to diabetes, and mutations that impair phosphohydrolase activity form the clinical basis of glycogen storage disease type 1a. Despite its relevance to health and disease, a comprehensive view of G6PC1 structure and mechanism has been limited by the absence of expression and purification strategies that isolate the enzyme in a functional form. In this report, we apply a suite of biophysical and biochemical tools to fingerprint the in vitro attributes of catalytically active G6PC1 solubilized in lauryl maltose neopentyl glycol (LMNG) detergent micelles. When purified from Sf9 insect cell membranes, the glycosylated mouse ortholog (mG6PC1) recapitulated functional properties observed previously in intact hepatic microsomes and displayed the highest specific activity reported to date. Additionally, our results establish a direct correlation between the catalytic and structural stability of mG6PC1, which is underscored by the enhanced thermostability conferred by phosphatidylcholine and the cholesterol analog cholesteryl hemisuccinate. In contrast, the N96A variant, which blocks N-linked glycosylation, reduced thermostability. The methodologies described here overcome long-standing obstacles in the field and lay the necessary groundwork for a detailed analysis of the mechanistic structural biology of G6PC1 and its role in complex metabolic disorders.


Assuntos
Glucose-6-Fosfatase , Doença de Depósito de Glicogênio Tipo I , Animais , Domínio Catalítico , Glucose/metabolismo , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/metabolismo , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/metabolismo , Camundongos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo
9.
Cardiovasc Drugs Ther ; 36(1): 121-129, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33411110

RESUMO

PURPOSE: Rivaroxaban, an oral anticoagulant, undergoes the metabolism mediated by human cytochrome P450 (CYP). The present study is to quantitatively analyze and compare the contributions of multiple CYPs in the metabolism of rivaroxaban to provide new information for medication safety. METHODS: The metabolic stability of rivaroxaban in the presence of human liver microsomes (HLMs) and recombinant CYPs was systematically evaluated to estimate the participation of various CYP isoforms. Furthermore, the catalytic efficiency of CYP isoforms was compared via metabolic kinetic studies of rivaroxaban with recombinant CYP isoenzymes, as well as via CYP-specific inhibitory studies. Additionally, docking simulations were used to illustrate molecular interactions. RESULTS: Multiple CYP isoforms were involved in the hydroxylation of rivaroxaban, with decreasing catalytic rates as follows: CYP2J2 > 3A4 > 2D6 > 4F3 > 1A1 > 3A5 > 3A7 > 2A6 > 2E1 > 2C9 > 2C19. Among the CYPs, 2J2, 3A4, 2D6, and 4F3 were the four major isoforms responsible for rivaroxaban metabolism. Notably, the intrinsic clearance of rivaroxaban catalyzed by CYP2J2 was nearly 39-, 64-, and 100-fold that catalyzed by CYP3A4, 2D6, and 4F3, respectively. In addition, rivaroxaban hydroxylation was inhibited by 41.1% in the presence of the CYP2J2-specific inhibitor danazol, which was comparable to the inhibition rate of 43.3% by the CYP3A-specific inhibitor ketoconazole in mixed HLMs. Furthermore, molecular simulations showed that rivaroxaban is principally bound to CYP2J2 by π-alkyl bonds, carbon-hydrogen bonds, and alkyl interactions. CONCLUSION: CYP2J2 dominated the hydroxylation of rivaroxaban, which may provide new insight into clinical drug interactions involving rivaroxaban.


Assuntos
Citocromo P-450 CYP2J2/metabolismo , Inibidores do Fator Xa/farmacocinética , Microssomos Hepáticos/metabolismo , Rivaroxabana/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Danazol/farmacologia , Interações Medicamentosas , Humanos , Isoenzimas , Microssomos Hepáticos/enzimologia , Simulação de Acoplamento Molecular
10.
Bull Exp Biol Med ; 172(2): 133-136, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34853965

RESUMO

We analyzed changes in activities of enzymes of phases I and II of xenobiotic biotransformation and parameters of NO metabolism in liver microsomes of rats with toxic CCl4-induced hepatitis after a 14-day course of sesquiterpene lactones from Artemisia leucodes (10 mg/kg). It was found that toxic hepatitis was associated with significant inhibition of NADPH-cytochrome c-reductase, benzo(a)pyrene hydroxylase, and NADPH-diaphorase, reduced cytochrome P-450 content, and enhanced induction of nitrate/nitrite reductase with accumulation of NO metabolites in the liver. Administration of sesquiterpene lactones stimulated activity of the studied components of the cytochrome P-450 system and promoted recovery of the NOergic system components; the effects were most pronounced in 7 and 14 days after treatment.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Lactonas/farmacologia , Microssomos Hepáticos/metabolismo , Oxigenases de Função Mista/metabolismo , Óxido Nítrico/metabolismo , Animais , Animais não Endogâmicos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Sistema Enzimático do Citocromo P-450/metabolismo , Citoproteção/efeitos dos fármacos , Lactonas/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Compostos Fitoquímicos/farmacologia , Ratos , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
11.
J Med Chem ; 64(23): 17123-17145, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34797052

RESUMO

Prostate cancer is the second most common type of cancer among men. Its main method of treatment is chemotherapy, which has a wide range of side effects. One of the solutions to this challenge is targeted delivery to prostate cancer cells. Here we synthesized a novel small-molecule PSMA-targeted conjugate based on the monomethyl auristatin E. Its structure and conformational properties were investigated by NMR spectroscopy. Cytotoxicity, intracellular reactive oxygen species induction, and stability under liver microsomes and P450-cytochrome species were investigated for this conjugate. The conjugate demonstrated 77-85% tumor growth inhibition levels on 22Rv1 (PSMA (+)) xenografts, compared with a 37% inhibition level on PC-3 (PSMA (-)) xenografts, in a single dose of 0.3 mg/kg and a sufficiently high therapeutic index of 21. Acute, chronic, and subchronic toxicities and pharmacokinetics have shown that the synthesized conjugate is a promising potential agent for the chemotherapy of prostate cancer.


Assuntos
Antígenos de Superfície/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Glutamato Carboxipeptidase II/química , Oligopeptídeos/química , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Humanos , Masculino , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Neurochem Int ; 151: 105209, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666077

RESUMO

Neuroleptics have to be used for a long time to produce a therapeutic effect. Cytochrome P450 2D (CYP2D) enzymes mediate alternative pathways of neurotransmitter synthesis (i.e. tyramine hydroxylation to dopamine and 5-methoxytryptamine O-demethylation to serotonin), and metabolism of neurosteroids. The aim of our present study was to examine the influence of chronic treatment with the new atypical neuroleptic asenapine on CYP2D in rat brain. In parallel, liver CYP2D was investigated for comparison. Asenapine added in vitro to microsomes of control rats competitively, but weakly inhibited the activity of CYP2D (brain: Ki = 385 µM; liver: Ki = 36 µM). However, prolonged administration of asenapine (0.3 mg/kg sc. for 2 weeks) significantly diminished the activity and protein level of CYP2D in the frontal cortex, nucleus accumbens, hippocampus and cerebellum, but did not affect the enzyme in the hypothalamus, brain stem, substantia nigra and the remainder of the brain. In contrast, asenapine enhanced the enzyme activity and protein level in the striatum. In the liver, chronically administered asenapine reduced the activity and protein level of CYP2D, and the CYP2D1 mRNA level. In conclusion, prolonged administration of asenapine alters the CYP2D expression in the brain structures and in the liver. Through affecting the CYP2D activity in the brain, asenapine may modify its pharmacological effect. By increasing the CYP2D expression/activity in the striatum, asenapine may accelerate the synthesis of dopamine (via tyramine hydroxylation) and serotonin (via 5-methoxytryptamine O-demethylation), and thus alleviate extrapyramidal symptoms. By reducing the CYP2D expression/activity in other brain structures asenapine may diminish the 21-hydroxylation of neurosteroids and thus have a beneficial influence on the symptoms of schizophrenia. In the liver, by reducing the CYP2D activity, asenapine may slow the biotransformation of concomitantly administered CYP2D substrates (drugs) during continuous treatment of schizophrenia or bipolar disorders.


Assuntos
Encéfalo/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Dibenzocicloeptenos/farmacologia , Fígado/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Dibenzocicloeptenos/administração & dosagem , Dopamina/metabolismo , Fígado/metabolismo , Masculino , Microssomos Hepáticos/enzimologia , Ratos Wistar , Serotonina/metabolismo
13.
Environ Toxicol Pharmacol ; 88: 103757, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34688910

RESUMO

Polychlorinated biphenyls (PCBs) are persistent environmental contaminants that continue to be of concern due to their varied toxicities. Upon human exposure, many PCBs with lower numbers of chlorine atoms are metabolized to hydroxylated derivatives (OH-PCBs), and cytosolic sulfotransferases can subsequently catalyze the formation of PCB sulfates. Recent studies have indicated that PCB sulfates bind reversibly with a high affinity to human serum proteins, and that they are also taken up by cells and tissues. Since PCB sulfates might be hydrolyzed to the more toxic OH-PCBs, we have investigated the ability of human hepatic microsomal sulfatase to catalyze this reaction. Twelve congeners of PCB sulfates were substrates for the microsomal sulfatase with catalytic rates exceeding that of dehydroepiandrosterone sulfate as a comparison substrate for steroid sulfatase (STS). These results are consistent with an intracellular mechanism for sulfation and de-sulfation that may contribute to retention and increased time of exposure to OH-PCBs.


Assuntos
Poluentes Ambientais/metabolismo , Microssomos Hepáticos/enzimologia , Bifenilos Policlorados/metabolismo , Sulfatases/metabolismo , Sulfatos/metabolismo , Catálise , Feminino , Humanos , Hidrólise , Hidroxilação , Masculino
14.
Mol Pharmacol ; 100(5): 480-490, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34503976

RESUMO

Carboxylesterase (CES) 2, an important metabolic enzyme, plays a critical role in drug biotransformation and lipid metabolism. Although CES2 is very important, few animal models have been generated to study its properties and functions. Rat Ces2 is similar to human CES2A-CES3A-CES4A gene cluster, with highly similar gene structure, function, and substrate. In this report, CRISPR-associated protein-9 (CRISPR/Cas9) technology was first used to knock out rat Ces2a, which is a main subtype of Ces2 mostly distributed in the liver and intestine. This model showed the absence of CES2A protein expression in the liver. Further pharmacokinetic studies of diltiazem, a typical substrate of CES2A, confirmed the loss of function of CES2A both in vivo and in vitro. At the same time, the expression of CES2C and CES2J protein in the liver decreased significantly. The body and liver weight of Ces2a knockout rats also increased, but the food intake did not change. Moreover, the deficiency of Ces2a led to obesity, insulin resistance, and liver fat accumulation, which are consistent with the symptoms of nonalcoholic fatty liver disease (NAFLD). Therefore, this rat model is not only a powerful tool to study drug metabolism mediated by CES2 but also a good disease model to study NAFLD. SIGNIFICANCE STATEMENT: Human carboxylesterase (CES) 2 plays a key role in the first-pass hydrolysis metabolism of most oral prodrugs as well as lipid metabolism. In this study, CRISPR/Cas9 technology was used to knock out Ces2a gene in rats for the first time. This model can be used not only in the study of drug metabolism and pharmacokinetics but also as a disease model of nonalcoholic fatty liver disease (NAFLD) and other metabolic disorders.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Carboxilesterase/deficiência , Carboxilesterase/genética , Técnicas de Silenciamento de Genes/métodos , Animais , Anti-Hipertensivos/farmacologia , Sequência de Bases , Diltiazem/farmacologia , Relação Dose-Resposta a Droga , Feminino , Resistência à Insulina/fisiologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Ratos , Ratos Sprague-Dawley
15.
Basic Clin Pharmacol Toxicol ; 129(6): 437-449, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34478607

RESUMO

Methylophiopogonanone A (MOA) is an abundant homoisoflavonoid in the Chinese herb Ophiopogonis Radix. Recent investigations revealed that MOA inhibited several human cytochrome P450 enzymes (CYPs) and stimulated OATP1B1. However, the inhibitory effects of MOA on phase II drug-metabolizing enzymes, such as human UDP-glucuronosyltransferases (hUGTs), have not been well investigated. Herein, the inhibition potentials of MOA on hUGTs were assessed. The results clearly demonstrated that MOA dose-dependently inhibited all tested hUGTs including UGT1A1 (IC50 = 1.23 µM), one of the most important detoxification enzymes in humans. Further investigations showed that MOA strongly inhibited UGT1A1-catalysed NHPH-O-glucuronidation in a range of biological settings including hUGT1A1, human liver microsomes (HLM) and HeLa cells overexpressing UGT1A1. Inhibition kinetic analyses demonstrated that MOA competitively inhibited UGT1A1-catalysed NHPH-O-glucuronidation in both hUGT1A1 and HLM, with Ki values of 0.52 and 1.22 µM, respectively. Collectively, our findings expanded knowledge of the interactions between MOA and human drug-metabolizing enzymes, which would be very helpful for guiding the use of MOA-related herbal products in clinical settings.


Assuntos
Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Interações Ervas-Drogas , Isoflavonas/farmacologia , Benzodioxóis/administração & dosagem , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Células HeLa , Humanos , Concentração Inibidora 50 , Isoflavonas/administração & dosagem , Microssomos Hepáticos/enzimologia
16.
Nat Commun ; 12(1): 5418, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521839

RESUMO

Advances in genomics have revealed many of the genetic underpinnings of human disease, but exposomics methods are currently inadequate to obtain a similar level of understanding of environmental contributions to human disease. Exposomics methods are limited by low abundance of xenobiotic metabolites and lack of authentic standards, which precludes identification using solely mass spectrometry-based criteria. Here, we develop and validate a method for enzymatic generation of xenobiotic metabolites for use with high-resolution mass spectrometry (HRMS) for chemical identification. Generated xenobiotic metabolites were used to confirm identities of respective metabolites in mice and human samples based upon accurate mass, retention time and co-occurrence with related xenobiotic metabolites. The results establish a generally applicable enzyme-based identification (EBI) for mass spectrometry identification of xenobiotic metabolites and could complement existing criteria for chemical identification.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Espectrometria de Massas/métodos , Microssomos Hepáticos/enzimologia , Xenobióticos/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Expressão Gênica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Marcação por Isótopo , Fígado/enzimologia , Desentoxicação Metabólica Fase I/genética , Desintoxicação Metabólica Fase II/genética , Camundongos
17.
Biol Pharm Bull ; 44(9): 1344-1347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471061

RESUMO

To identify the CYP isoforms involved in the production of 2-hydroxyestradiol 17-sulfate (2-OH-ES), which we assume to be an antioxidant in vivo, the 2-hydroxylation reaction of estradiol 17-sulfate (ES) by human liver microsome was investigated. As a result, it was estimated that CYP2C8 and 2C9 were largely involved in the production of 2-OH-ES. Therefore, the 2-hydroxylation kinetic analysis of ES was performed for both CYPs, and the metabolic clearance Vmax/Km (µL/nmol CYP/min) was determined. On comparing the results of ES with those of estradiol (E2), it was found that CYP2C8 was about 2.5 times higher and CYP2C9 was about 3 times higher, and ES was more likely to be a substrate for the 2-hydroxylation reaction by both CYPs. The CYP isoforms involved in A-ring hydroxylation of E2 and ES differed. From this, it was speculated that 2-OH-ES plays a different role to 2-hydroxyestradiol (2-OH-E2), which is recognized as an antioxidant in the body.


Assuntos
Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Estradiol/análogos & derivados , Estradiol/metabolismo , Humanos , Microssomos Hepáticos/enzimologia
18.
Chem Res Toxicol ; 34(9): 2145-2156, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34472326

RESUMO

Cytochrome P450 enzymes (CYPs) play an important role in bioactivating or detoxifying polycyclic aromatic hydrocarbons (PAHs), common environmental contaminants. While it is widely accepted that exposure to PAHs induces CYPs, effectively increasing rates of xenobiotic metabolism, dose- and time-response patterns of CYP induction are not well-known. In order to better understand dose- and time-response relationships of individual CYPs following induction, we exposed B6129SF1/J mice to single or repeated doses (2-180 µmol/kg/d) of benzo[a]pyrene (BaP) or Supermix-10, a mixture of the top 10 most abundant PAHs found at the Portland Harbor Superfund Site. In hepatic microsomes from exposed mice, we measured amounts of active CYPs using activity-based protein profiling and total CYP expression using global proteomics. We observed rapid Cyp1a1 induction after 6 h at the lowest PAH exposures and broad induction of many CYPs after 3 daily PAH doses at 72 h following the first dose. Using samples displaying Cyp1a1 induction, we observed significantly higher metabolic affinity for BaP metabolism (Km reduced 3-fold), 3-fold higher intrinsic clearance, but no changes to the Vmax. Mice dosed with the highest PAH exposures exhibited 1.7-5-fold higher intrinsic clearance rates for BaP compared to controls and higher Vmax values indicating greater amounts of enzymes capable of metabolizing BaP. This study demonstrates exposure to PAHs found at superfund sites induces enzymes in dose- and time-dependent patterns in mice. Accounting for specific changes in enzyme profiles, relative rates of PAH bioactivation and detoxification, and resulting risk will help translate internal dosimetry of animal models to humans and improve risk assessments of PAHs at superfund sites.


Assuntos
Benzo(a)pireno/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Animais , Feminino , Fígado/enzimologia , Camundongos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Proteoma/metabolismo , Proteômica
19.
Drug Des Devel Ther ; 15: 3661-3673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456561

RESUMO

PURPOSE: Avitinib is the first third-generation epithelial growth factor receptor (EGFR) inhibitor independently developed in China and is mainly used for treating non-small cell lung cancer. However, pharmacokinetic details are limited. This study explored the in vivo and in vitro effects of avitinib on cytochrome CYP450 enzymes metabolic activity. METHODS: A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for determining six probe substrates and their metabolites. Avitinib influence on activity levels of CYP isozymes was examined in vitro using human and rat liver microsomes (HLMs/RLMs). For in vivo studies, rats were pretreated with 30 mg/kg avitinib once daily for 7 days (avitinib multiple-doses group), 30 mg/kg avitinib on day 7 (avitinib single-dose group), or an equivalent amount of CMC-Na once daily for 7 days (control group), followed by intragastrical administration of the probe substrates (1 mg/kg tolbutamide and 10 mg/kg phenacetin, bupropion, chlorzoxazone, dextromethorphan, and midazolam). Plasma pharmacokinetics and IC50 values of the probe substrates were then compared. Pharmacokinetic parameters were determined using non-compartmental analysis implemented in a pharmacokinetic program. RESULTS: In vitro experiments revealed different inhibitory effects of avitinib on the six probe substrates with various IC50 values (bupropion, 6.39/22.64 µM; phenacetin, 15.79/48.36 µM; chlorzoxazone, 23.15/57.09 µM; midazolam, 27.64/59.6 µM; tolbutamide, 42.18/6.91 µM; dextromethorphan, 44.39/56.57 µM, in RLMs and HLMs respectively). In vivo analysis revealed significant differences (P <0.05) in distinct pharmacokinetic parameters (AUC(0-t), AUC (0-∞), Cmax, MRT(0-t), MRT (0-∞), and CLz/F) for the six probe substrates after avitinib pretreatment. CONCLUSION: A sensitive and reliable UPLC-MS/MS method was established to determine the concentration of six probe substrates in rat plasma. Avitinib had inhibitory effects on CYP450 enzymes, especially cyp2b1, cyp1a2 in RLMs, CYP2C9 in HLMs, and cyp1a2, cyp2b1, cyp2d1, and cyp2e1 in vivo. Our data recommend caution when avitinib was taken simultaneously with drugs metabolized by CYP450 enzymes.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Área Sob a Curva , Cromatografia Líquida de Alta Pressão/métodos , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Humanos , Concentração Inibidora 50 , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Preparações Farmacêuticas/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
20.
Chem Res Toxicol ; 34(9): 2157-2165, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34431289

RESUMO

Marrubiin, a furanoid compound, is a well-known diterpenoid lactone isolated from Marrubium vulgare, which displays a wide spectrum of pharmacological effects and potential hepatotoxicity. Considering that marrubiin contains a structural alert, furan ring, metabolic activation may be one of the major metabolic pathways, and the reactive metabolite may be involved in the hepatotoxicity. The present study was carried out to investigate the bioactivation mechanism of marrubiin in rats and humans. Marrubiin was initially metabolized into cis-butene-1,4-dial intermediate, which was readily trapped by glutathione (GSH) and N-acetyl-lysine (NAL) in the microsomal incubations supplemented with NADPH. A total of nine conjugates were detected and identified by high-resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. M1-M3 and M6 and M7 were characterized as mono-GSH conjugates, and M4 and M5 were identified as bis-GSH conjugates. M8 and M9 were identified as NAL conjugates. In rat bile, five GSH conjugates (M1-M3; M6 and M7) were detected. M1, M8, and M9 were chemically synthesized, and their structures were characterized by 13C NMR. Sulfaphenazole, ticlopidine, and ketoconazole displayed significant inhibitory effect on the bioactivation of marrubiin. Further phenotyping revealed that CYP2C9, CYP2C19, and CYP3A4 were the primary enzymes catalyzing the bioactivation of marrubiin. The current study provides evidence for the CYP-dominated bioactivation of marrubiin to the corresponding cis-butene-1,4-dial intermediate, which enables us to better understand the potential side effects caused by marrubiin.


Assuntos
Diterpenos/metabolismo , Marrubium/química , Ativação Metabólica , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Masculino , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...